Effects of Chemical Fertilizers, Organic Amendments and Effective Microorganisms (EM) on Soil Fertility and Seed Cotton Production

KHIN KHIN MU

Fibre and Yarn Testing Laboratory Cotton and Sericulture Department Myanmar Industrial Crop Development Enterprise (MICDE) Meikthila, Mandalay Division

ABSTRACT

EM technology is based on the use of mixed cultures of beneficial microorganisms as inoculants that can increase the microbial diversity of agricultural soils. Mineral nutrition of cotton, various optimum conditions in soil required for cotton cultivation and the contributions made by several soil microorganisms have been critically reviewed in this experiments.

The experimental results indicated that neither seed cotton yield nor soil fertility can be sustained if no action is taken against soil degradation in consecutive cotton cropping at Lungyaw Farm. Application of chemical fertilizers significantly improved cotton yields, but soil fertility deterioration in terms of chemical and physical properties of soil under such farming practices were observed.

Applications of EM were found to magnify the positive effects of various soil basal treatments on the seed cotton production and soil fertility under consecutive seed cotton croping at Lungyaw Model Cotton Farm.

Introduction

Cotton is a clean - culture crop, this is not much chance for an accumulation of organic matter in the soil. The long-term use of only chemical fertilizers in crop production has created serious problems such as higher cost of production with lower net income for the farmers. Many cultivated soil used for cotton growing, needs not only chemical fertilizers but also adequate organic matter to maintain optimum drainage and aeration conditions. The efficiency of added organic matter can be greatly magnified by the activity of various soil microorganisms EM technology is based on the use of mixed cultures of beneficial microorganisms as inoculants that can increase the microbial diversity of agricultural soils.

Effective Microorganisms (EM)

EM are mixed culture of beneficial microorganisms can that be applied as inoculants to increase the microbial diversity of soil and plants which, in turn, can improve soil health, and the growth, yield are quality of crops. (Higa and Wididana, 1991)

There are two main groups of microorganisms in soil, namely harmful microorganisms and beneficial or effective microorganisms.

The soil microorganisms can be classified into major groups, such as the bacteria, actinomycetes, fungi, moulds and yeasts - the microflora; and the protozoa, worms and arthopods the microfauna and fauna.

A list of the main classes of organisms involved in the composting process in given in the Table. (A)

No	Organisms type	Organisms	Number per gm of
			moist compost
1	Microflora	Bacteria	$10^8 - 10^9$
	(Very small plants)	Actinomycetes,	$10^5 - 10^8$
		Fungi mould, yeasts	10^4 - 10^6
2	Microfauna	Protozoa	$10^4 - 10^5$
	(very small animals)		
3	Microflora	Fungi (mushrooms)	
	(Large plants)		
4	Microfauna	Millipedes, centipedes,	
	(small soil animals)	spiders, Beetles warms.	

 Table (A) Organisms of Composting

Source: Dalzell et al. (1987)

Harmful microorganisms cause detrimental effects on crop production and those effects can be briefly summarized as follows:

- 1. induction of plants diseases,
- 2. stimulation of soil-borne pathogens,
- 3. immobilization of plant nutrients,
- 4. inhibition of seed germination,
- 5. inhibition of plant growth and development, and
- 6. production of phototoxic substance.

Beneficial microorganisms that can integrate the soil-plant microbiological equilibrium include lactic acid bacteria, photosynthetic bacteria, actinomycetes and microrrhizal fungi.

Through useful fermentations these organisms produce organic acids, plant hormones (e.g auxin, gibberellin and cytokinin), vitamins and antibiotics.

(These products of microbial metabolism can benefit the growing plant by;)

- a. solubilizing nutrients of limited solubility, eg-rock phosphate,
- b. complexing heavy metals to limit their uptake by plants,
- c. providing simple organic molecules such as amino acid for direct uptake,
- d. protecting the plant from soil-borne pathogens, insects and diseases,
- e. stimulating plant growth and increasing the yield and quality of crops, and
- f. improving the chemical and physical properties of soils.

EM is the mixture of the beneficial microorganisms, which have following functions;

- 1. fixation of atmospheric nitrogen,
- 2. decomposition of organic wastes and residues
- 3. suppression of soil borne pathogens,
- 4. recycling and increased availability of plant nutrients.
- 5. degradation of toxicants including pesticides,
- 6. Production of antibiotics and other bioactive compounds.
- 7. production of simple organic molecules for plant uptake,
- 8. complexation heavy metals to limit plant uptake,
- 9. solubilization of insoluble sources and
- 10. production of poly saccharides to improve soil aggregation

Objective

- To study the effects of chemical fertilizers, organic amendments, and effective microorganisms (EM) on the performance of cotton crop,
- To study the effects of treatments on the chemical and physical properties of cultivated soils, and
- ✤ To formulate a profitable agriculture system which will improve soil fertility and productivity without causing deterioration of the environment.

Mateirals and Methods

Experimental site	-	Lungyaw Model Cotton Farm Kyaukse
		Township
Duration	-	Expt: (1) 1997, February to August.
		Expt: (2) 1998, March to September
Design	-	Strip plot $(2 \times 6 \times 4)$
Replication	-	4
Plot size	-	Sub plot size -7×9 sq m
		Whole plot size - 3024 sq m (0.3 ha)
Row spacing	-	100×33 cm (10 rows) = 3' × 1' - 2 Plt
Variety	-	Lungyaw - 3 (Gossypium hirsutum)

Treatments

(a)	Main treatments (Vertical factors)							
	Soil ba	asal trea	tments $(M) = 6$					
	M_1	=	Control					
	M_2	=	Fertilizers					
	M_3	=	Farm yard Manure (F.Y.M)					
	M_4	=	Rice straw					
	M_5	=	Sesamum Straw					
	M_6	=	Pea Straw					
(b)	Sub - t	treatmen	ts (Horizontal factors)					
	EM ap	plication	n levels $(S) = 2$					
	\mathbf{S}_1	=	Without EM					
	S_2	=	With EM					

Preparation of Bokashi

Firstly, straw bed of about 20 cm height with rectangular shape was made. EM instant solution was spread onto the straw. A little amount of F.Y.M, and rice - bran were spread on the straw bed. The procedure was repeated unit the height of Bokashi pile reached about 1 meter. This pile was covered with a plastic sheet. The temperature of the Bokashi pile was checked frequently. If the temperature shot up above 45°C, the cover was removed for a few minutes to bring the temperature down. Under warm weather condition, it would be ready to be used in about 7-10 days.

The treatments used in this field experiments were as follows:

Sr No	Symbol	Treatments
Treatment 1	$M_1 S_1$	Control
Treatment 2	$M_1 \ S_2$	EM only
Treatment 3	$M_2 S_1$	Chemical fertilizers only
Treatment 4	$M_2 S_2$	Chemical fertilizers + EM
Treatment 5	$M_3 S_1$	Farm yard manure (F.Y.M) only
Treatment 6	$M_3 S_2$	Farm yard manre (F.Y.M) + EM
Treatment 7	$M_4 S_1$	Rice straw only
Treatment 8	$M_4 S_2$	Rice straw Bokashi + EM
Treatment 9	$M_5 S_1$	Sesamum straw only
Treatment 10	$M_5 S_2$	Sesamum straw Bokashi + EM
Treatment 11	$M_6 S_1$	Pea Straw only
Treatment 12	$M_6 \ S_2$	Pea Straw Bokashi + EM

Preparation of EM Instant Solution

(a) EM instant solution was prepared at the 1:4:95 ratio with EM concentrate solution, molasses and water. The mixture was thoroughly shaken. The container was sealed to have an airtight conditions. When the dark colour of molasses turned to straw colour, the solution was ready to the used. It usually takes about 3 to 5 days from the time of preparation. It can be applied directly into the soil and can also be used as foliar spray.

(b) EM instant solution was prepared at the 1:1:98 ratio with EM concentrate solution, molasses and water respectively. The mixture was thoroughly shaken. This EM instant solution is to be used for making Bokashi, which is EM fermented compost.

(c) EM instant solution 1:4:95 was applied at the rate of 250 liter / ha,

Which was equally split into four does to be applied first at the time of sowing, second at 30 DAE, third at 50 DAE, and finally at 75 DAE.

Application of Treatments

Chemical fertilizers were used, 126 kg / ha of urea was split applied four time as: 40% of urea applied at basal,10% of urea applied at the beginning of square formation, 25% of urea at the beginning of flowering, and 25% of urea at the peak of flowering time. Triple superphosphate was applied, 126 kg / ha, Muriate of potash was used at the rate of 63 kg/ha, There were used as the basal application. Organic amendments or crop residues and bokashi were applied at the rate of 8 tons / ha, as the basal application. Cotton seed rate was 50 kg / ha.

Data Collection

(a) The following yield and yield components were recorded;

- 1. plant height (cm),
- 2. No. of leaf per plant (No. / plt),
- 3. No. of branches per plant (No. / plt),
- 4. Fresh weight per plant (g / plt),
- 5. Dry weight per plant (g / plt),
- 6. No. of squares per plant (No. / plt), and
- 7. yield of seed cotton (Kg / ha)
- (b) Soil sample Analysis
 - 1. Determination of soil texture,
 - 2. Soil organic carbon,
 - 3. total nitrogen content in soil,
 - 4. available phosphorous content in soil,
 - 5. available potassium content in soil,
 - 6. bulk density of soil,
 - 7. maximum water holding capacity of soil.
- (c) Organic materials before and after composting Analysis;
 - 1. Organic carbon %,
 - 2. Total nitrogen %,
 - 3. C:N (Carbon, nitrogen ratio),
 - 4. Total P₂ O₅%,
 - 5. Total K₂O%.

CONCLUSION

Among the four organic manures, pea straw application was found to be the most effective soil amendment in cotton production. When the organic manures were fermented with EM, before they were applied to the soil, the effects of organic manures on cotton productions were found to be magnified. Control plots which did not receive any organic residues or any chemical fertilizers showed degradation of chemical (eg. negative balances of some plant nutrients in soil) and physical (eg. increased bulk densities of soil and decreased maximum water holding capacities) properties of soil under consecutive cotton growing. Application of chemical fertilizers resulted in positive balances of some plant nutrients budget (such as available P_2O_5 , available K_2O etc) in soil after growing cotton. However repeated used of chemical fertilizers in consecutive cotton growing resulted in significant degradation of soil physical properties such as bulk densities and maximum water holding capacities due to the compaction of soil. Addition of organic manures as soil amendments increased cotton yield to a considerable extent when compared to control. Among the four types of organic manures being investigated pea straw bokashi addition produced seed cotton yield almost as good as chemical fertilizers application If pea straw is not readily available either F.Y.M + EM, addition or rice straw boksahi may be chosen as second most suitable substitutes for chemical fertilizers.

Addition of organic manures improved not only chemical properties but also physicals properties of soil.

Hence, the experimental results indicated that addition of pea straw bokashi at the rate of 8 tons / ha may be considered as a profitable farming method which will improve or sustain not only crop productivity but also soil fertility in consecutive cotton growing at Lungyaw Farm, Kyaukse.

Reference

- Dalzell, H.W., A.J. Biddlestone, K.R. Gray and K. Thurairaja (1987) Soil Management: Compost production and use in tropical and subtropical environments, FAO *Technical paper*. Rome, Italy.
- Higa, T. and G.N. wididana (1991) Concept and theories of Effective Microorganisms . P . 118 - 124. In; J.F parr, S.B. hornick and C.E. Whitman (Eds.) Proceeding of first International conference on Kyusei Nature farming. US Department of Agriculture. Washington D.C. USA.

Acknowledgement

First of all, I would like to thank, my supervisor, pro - rector (retired), Dr Cho Cho Myint, Yezin Agricultural University, for her direction, suggestion, advice and encouragement. I am also very grateful to my supervisor committee members and my parents for their invaluable advice and suggestion at the may study period.

	Dlant height	no. of	no. of	Fresh	Dry	no. of	no. of	Seed cotton
Treatments	Plant height	leaves/plt	branches/plt	weight/plt	weight/plt	squares/plt	bolls/plt	yield
	(cm)	(no. / plt)	(no. / plt)	(g / plt)	(g / plt)	(no. / plt)	(no. / plt)	(Kg / ha)
(M ₁) Control								
Without EM	80.9 c	52.8 d	12.9 de	135 e	63.8 d	9.1 d	9.7 d	1228 de
With EM	84.5 bc	56.4 cd	12.9 de	165 bcde	74.5 bcd	9.9 bcd	9.8 d	1364 abcd
(M ₂) Fertilizers								
Without EM	89.8 ab	71.0 ab	14.5 ab	217 ab	99.5 ab	11.6 ab	12.7 ab	1410 abc
With EM	<u>94.9 a</u>	<u>73.3 a</u>	<u>15.0 a</u>	<u>240 a</u>	<u>116.0 a</u>	<u>12.6 a</u>	<u>13.5 a</u>	<u>1489 a</u>
(M ₃) F.Y.M								
Without EM	82.7 bc	63.2 bc	13.6 cde	137 e	70.5 bcd	9.6 cd	10.4 cd	1353 abcd
With EM	84.4 bc	65.0 abc	14.0 bc	200 abcd	96.0 abc	10.9 cd	10.6 cd	1421 abc
(M ₄) Rice Straw								
Without EM	81.5 bc	59.8 cd	12.8 cde	152 cde	64.0 d	9.6 cd	9.7d	1193 e
With EM	86.2 bc	62.0 c	13.2 de	200 abcd	84.5 abcd	11.1 abc	11.6 cd	1275 cde
(M ₅) Sesamum Straw								
Without EM	78.5 c	58.1 cd	13.4 de	142 e	64.8 cd	10.2 bcd	9.7 d	1239 de
With EM	80.6 c	59.1 cd	13.6 abc	175 bcde	76.5 bcd	11.0 abcd	10.2 d	1289 bcde
(M ₆) Pea straw								

 Table (1)
 Effect of chemical fertilizers, organic amendments and EM on the seed cotton yield and yield components, observed in first field experiment conducted in per-monsoon, 1997.

Without EM	83.5 bc	62.1 c	13.7 bcd	145 de	70.5 bcd	11.6 ab	11.3bcd	1371 abcd
With EM	86.0 bc	63.1 bc	14.2 abc	207 abc	96.3abc	<u>12.6 a</u>	<u>12.3 ab</u>	<u>1443 ab</u>

Treatment means in a column sharing the same letters are not significantly different at the 5% level of probability.

 Table (2)
 Effect of chemical fertilizers, organic amendments and EM on the seed cotton yield and yield components, observed in second field experiment conducted in per-monsoon, 1998.

	Plant height	no. of	no. of	Fresh	Dry	no. of	no. of	Seed cotton
Treatments		leaves/plt	branches/plt	weight/plt	weight/plt	squares/plt	bolls/plt	yield
	(cm)	(no. / plt)	(no. / plt)	(g / plt)	(g / plt)	(no. / plt)	(no. / plt)	(Kg / ha)
(M ₁) Control								
Without EM	65.9 c	40.4 e	16.0 d	112 f	55.3 e	10.0 d	9.8 d	798.8 g
With EM	68.3 bc	42.1 de	16.8 bcd	129 def	64.5 de	12.5 de	11.6 cd	935.3fg
(M ₂) Fertilizers								
Without EM	78.1 ab	54.5 abc	17.8 bc	178 b	86.8 b	15.5 abc	15.6 ab	1352.5 ab
With EM	86.3 a	60.6 a	19.5 a	212 a	108.3 a	17.7 a	17.4 a	1491.3 a
(M ₃) F.Y.M								
Without EM	73.2 bc	45.5 de	16.9 bcd	123 def	61.5 de	12.5 cd	11.9 cd	1070.3 cdef
With EM	74.7 bc	48.6 bcde	18.0 b	139 def	69.5 cde	13.7 bc	12.9 bc	1187.8 bcd
(M ₄) Rice Straw								
Without EM	72.0 bc	42.1 de	16.8 bcd	128 def	64.8 de	12.9 cd	11.9 cd	1018.0 def
With EM	73.8 bc	47.7 bcde	17.1 bcd	150 bcd	73.3 cde	13.5 bcd	13.0 bc	1137.0 de
(M ₅) Sesamum Straw								

Without EM	69.8 bc	46.4 cde	16.5 cd	120 ef	61.3 de	13.2 cd	12.2 c	906.0 fg
With EM	71.3 bc	49.1 bcd	17.0 bcd	145 cde	73.0 cd	14.7 abc	13.2 bc	977.8 efg
(M ₆) Pea straw								
Without EM	73.4 bc	49.7 bc	17.4 bcd	145 cde	73.5 cd	14.1 bc	12.9 bc	1074.3 cdef
With EM	77.7 ab	55.6 ab	18.1 ab	171 bc	84.8 bc	16.9 ab	16.5 a	1220.3 bc

Treatment means in a column sharing the same letters are not significantly different at the 5% level of probability.

Table (3) Effect of EM on the <u>Organic Carbon Content of soil</u> cultivated with cotton in pre-monsoon seasons of 1997 and 1998.

		First field exp	eriment, 1997		Second field experiment, 1998				
				Percent				Percent	
Treatments	Organic Carbon %		difference	increase	Organic (Carbon %	difference	increase	
Treaunems				due to EM				due to EM	
	Without	With EM	(S ₂ - S ₁)	$\frac{S_2 - S_1}{S_1} \times 100$	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	
	EM (S ₁)	(S ₂)		<i>S</i> ₁ <i>X</i> 100	EM (S ₁)	(S ₂)	$(5_2 - 5_1)$	S_1	
(M ₁) Control	1.60	1.61	+ 0.01	+ 0.63 %	1.48	1.51	+ 0.03	+ 2.03 %	
(M ₂) Fertilizers	1.65	1.63	- 0.02	- 1.21 %	1.57	1.69	+ 0.12	+ 7.64 %	
(M ₃) F.Y.M	1.60	1.71	+ 0.11	+ 6.88 %	1.64	1.73	+ 0.09	+ 5.49 %	
(M ₄) Rice Straw	1.62	1.68	+ 0.06	+ 3.70 %	1.67	1.68	+ 0.01	+ 0.60 %	
(M ₅) Sesamum Straw	1.60	1.72	+ 0.12	+ 7.50 %	1.66	1.75	+ 0.09	+ 5.42 %	
(M ₆) Pea Straw	1.68	1.71	+ 0.11	+ 6.88 %	1.69	1.84	+ 0.15	+ 8.88 %	
(S) Mean	1.63	1.68	+ 0.05	+ 3.07 %	1.62	1.70	+ 0.08	+ 4.94 %	

Table (4)	Effect of EM on the	Total nitrogen	Content of soil	cultivated	with cotton in pre-monsoon	seasons of 1997 and 1998.
-----------	---------------------	----------------	-----------------	------------	----------------------------	---------------------------

		First field exp	eriment, 1997	1	Second field experiment, 1998				
	Total nitrogen %			Percent				Percent	
T			difference	increase	Total nit	rogen %	difference	increase	
Treatments				due to EM				due to EM	
	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{2} \times 100$	
	EM (S ₁)	(S ₂)	(52 - 51)	<i>S</i> ₁ ×100	EM (S ₁)	(S ₂)	(52 - 51)	<i>S</i> ₁ ×100	
(M ₁) Control	0.16	0.16	0	+ 0 %	0.14	0.15	+ 0.01	+ 7.14 %	
(M ₂) Fertilizers	0.17	0.17	0	+ 0 %	0.16	0.17	+ 0.01	+ 6.25 %	
(M ₃) F.Y.M	0.16	0.18	+ 0.02	+ 12.50 %	0.18	0.18	0	0 %	
(M ₄) Rice Straw	0.17	0.18	+ 0.01	+ 5.88 %	0.10	0.18	+ 0.02	+ 12.50 %	
(M ₅) Sesamum Straw	0.17	0.18	+ 0.01	+ 5.88 %	0.16	0.18	+ 0.02	+ 12.50 %	
(M ₆) Pea Straw	0.17	0.19	+ 0.02	+ 11.76 %	0.18	0.21	+ 0.03	+ 16.67 %	
(S) Mean	0.17	0.18	+ 0.01	+ 5.88 %	0.16	0.18	+ 0.02	+ 12.50 %	

		First field exp	periment, 1997	1	Second field experiment, 1998				
	Available P ₂ O ₅ %		Percent					Percent	
Tuestmente			difference	increase	Availab le	P ₂ O ₅ %	difference	increase	
Treatments				due to EM				due to EM	
	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	
	EM (S ₁)	(S ₂)	$(3_2 - 3_1)$	S_1	EM (S ₁)	(S ₂)	$(3_2 - 3_1)$	<i>S</i> ₁ ×100	
(M ₁) Control	138.92	140.28	+ 1.36	+ 0.98 %	125.81	126.42	- 0.61	+ 0.48 %	
(M ₂) Fertilizers	215.80	216.34	+ 0.54	+ 0.25 %	215.64	292.71	+ 77.07	+ 35.4 %	
(M ₃) F.Y.M	196.28	196.74	+ 0.46	+ 0.23 %	192.50	234.61	+ 42.10	+ 21.87 %	
(M ₄) Rice Straw	108.19	184.12	+ 3.93	+ 2.18 %	172.96	195.81	+ 22.85	+ 13.2 %	
(M ₅) Sesamum Straw	159.57	162.39	+ 2.82	+ 1.77 %	162.58	180.06	+ 17.48	+ 10.75 %	
(M ₆) Pea Straw	146.72	156.30	+ 9.58	+ 6.53 %	148.31	164.21	+ 15.90	+ 10.72 %	
(S) Mean	172.92	176.03	+ 3.12	+ 1.80 %	169.3	198.97	+ 29.34	+ 17.30 %	

]	Table (5)	Effect of EM on the	Available	P_2O_5 Content of soil	cultivated v	with	cotton in pre-monsoon	seasons of 1997 and 1998	5.

		First field exp	periment, 1997	1	Second field experiment, 1998					
	Available K ₂ O%			Percent				Percent		
Treatments			difference	increase	Available K ₂ O %		difference	increase		
Treatments				due to EM				due to EM		
	Without	Without With EM		$S_2 - S_1 > 100$ Without		With EM	$(S_2 - S_1)$	$S_2 - S_1 > 100$		
	EM (S ₁)	(S ₂)	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	EM (S ₁)	(S ₂)	$(3_2 - 3_1)$	$\frac{S_2 - S_1}{S_1} \times 100$		
(M ₁) Control	0.04	0.04	0	0 %	0.03	0.04	+ 0.01	+ 33.33 %		
(M ₂) Fertilizers	0.09	0.09	0	0 %	0.09	0.14	+ 0.05	+ 55.56 %		
(M ₃) F.Y.M	0.09	0.09	0	0 %	0.09	0.10	+ 0.01	+ 11.11 %		
(M ₄) Rice Straw	0.04	0.04	0	0 %	0.04	0.07	+ 0.03	+ 75.00 %		
(M ₅) Sesamum Straw	0.05	0.05	0	0 %	0.05	0.06	+ 0.01	+ 20.00 %		
(M ₆) Pea Straw	0.09	0.09	0	0 %	0.10	0.10	+ 0	+ 00 %		
(S) Mean	0.07	0.07	0	0 %	0.07	0.09	+ 0.02	+ 28.57 %		

Table (6) Effect of EM on the <u>Available K₂O Content of soil</u> cultivated with cotton in pre-monsoon seasons of 1997 and 1998.

Table (7) Effect of EM on the <u>Bulk Density of soil</u> cultivated with cotton in pre-monsoon seasons of 1997 and 1998.

		First field exp	eriment, 1997	,	Second field experiment, 1998					
				Percent				Percent		
Treatments	Bulk Density %		difference	increase	Bulk Density %		difference	increase		
Treatments			due to EM					due to EM		
	Without	With EM	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$	Without With EM			$\frac{S_2 - S_1}{S_1} \times 100$		
	EM (S ₁)	(S ₂)	$(s_2 - s_1)$		EM (S ₁)	(S ₂)	$(S_2 - S_1)$	S ₁		
(M ₁) Control	1.39	1.33	- 0.06	- 4.32 %	1.40	1.35	- 0.05	- 3.57 %		
(M ₂) Fertilizers	1.39	1.33	- 0.06	- 4.32 %	1.45	1.35	- 0.10	- 6.90 %		
(M ₃) F.Y.M	1.33	1.20	- 0.13	- 9.77 %	1.22	1.20	- 0.02	- 1.64 %		
(M ₄) Rice Straw	1.25	1.16	- 0.09	- 7.20 %	1.16	1.13	- 0.03	- 2.59 %		
(M ₅) Sesamum Straw	1.37	1.16	- 0.21	- 15.33 %	1.16	1.10	- 0.06	- 5.17 %		
(M ₆) Pea Straw	1.37	1.18	- 0.19	- 13.87 %	1.15	1.10	- 0.05	- 4.35 %		
(S) Mean	1.35	1.23	- 0.12	- 8.89 %	1.26	1.21	- 0.05	- 3.97 %		

Table (8) Effect of EM on the Maximum Water Holding Capacity of soil cultivated with cotton in pre-monsoon seasons of 1997 and 1998.

		First field exp	eriment, 1997	,	Second field experiment, 1998					
Treatments	Maximum water holding capacity of soil %		difference	Percent increase due to EM		vater holding of soil %	difference	Percent increase due to EM		
	Without	With EM		$\frac{S_2 - S_1}{S_1} \times 100$	Without	Without With EM		$\frac{S_2 - S_1}{1} \times 100$		
	EM (S ₁)	(S ₂)	$(S_2 - S_1)$		EM (S ₁)	(S ₂)	$(S_2 - S_1)$	$\frac{S_2 - S_1}{S_1} \times 100$		
(M ₁) Control	57.69	60.34	+ 2.61	+ 4 .52 %	50.81	60.08	+ 9.27	+ 18.24 %		
(M ₂) Fertilizers	58.46	63.55	+ 5.09	+ 8.71 %	54.90	63.72	+ 8.82	+ 16.07 %		
(M ₃) F.Y.M	61.57	65.26	+ 3.69	+ 5.99 %	63.59	66.19	+ 2.60	+ 4.09 %		
(M ₄) Rice Straw	59.35	61.84	+ 2.49	+ 4.20 %	62.39	62.70	+ 0.31	+ 0.50 %		
(M ₅) Sesamum Straw	63.03	63.04	+ 0.01	+ 0.02 %	63.40	64.98	+ 1.58	+ 2.49 %		
(M ₆) Pea Straw	61.64	64.35	+2.71	+ 4.40 %	64.76	65.56	+0.80	+ 1.24 %		
(S) Mean	60.29	63.06	+ 2.77	+ 4.59 %	59.98	63.87	+ 3.89	+ 6.49 %		

Organic materials	Organic C	arbon (%)	Total nitrogen (%)		C:N		Total P2O5 (%)		Total K₂O (%)	
Organic materials	1997	1998	1997	1998	1997	1998	1997	1998	1997	1998
Organic Materials										
Rice Straw	54.52	57.15	0.94	1.07	58.00	53.41	0.05	0.27	1.76	1.17
Sesamum Straw	57.97	55.42	1.90	1.63	29.46	34.00	0.12	0.17	0.91	0.95
Pea Straw	55.85	42.89	2.88	2.09	19.39	20.52	0.19	0.18	2.41	1.55
F.Y.M	-	43.57	-	0.54	-	-	-	0.33	_	0.77
After Composting with EM										
Rice Straw Bokashi	44.27	27.06	1.27	1.23	34.86	22.00	0.21	0.61	1.94	1.45
Sesamum Straw Bokashi	55.57	34.40	2.22	2.15	25.93	16.00	0.23	0.55	2.07	1.68
Pea Straw Bokashi	53.83	20.90	3.18	2.09	16.93	10.00	0.26	0.58	2.85	2.15

Table (9) The organic carbon, total nitrogen, C:N, total P_2O_5 and total K_2O content of organic materials before and after composting