Effects of Nitrogen and Potassium Application on Plant Growth, Yield and Fiber Quality of Cotton(*Gossypium hirsutum L*.)

Thu Zar Win

AGC-95

Department of Soil and Water Science

21 / 7 / 2016 ₁

INTRODUCTION

Cotton (Gossypium hirsutum L.)

major cash crop grown primarily for fiber and oil seed in the world

(Oosterhuis 2001)

 one of the most important industrial crops and essential for local consumption and export for foreign exchange

(Pye Tin 2003)

Unique - perennial with an indeterminate growth habit

(Oosterhuis 2001)

Nutritional needs - more complex than any other field crops

(Grimes and El-Zik 1990)

 Major factor - both yield and quality adequate and balanced nutrition

Balanced fertility - essential optimizing yields, increasing profits,
and improving efficiency of fertilizer
application (Johnson et al. 1997)

Nitrogen (N)

- Essential macronutrient
- Building block for proteins & chlorophyll synthesis (Hou et al. 2007)

N can be lost from the system in several ways - considered - N management plan

 N fertilization had significant impacts on plant growth, lint yields and fiber quality (Bonada et al. 1996)

Deficiency and Excess of Nitrogen (N)

Decreased boll production, poor plant development (Zhang et al. 2011)

Excessive vegetative growth, delay maturity (Hodges 2002)

Reduced plant height, fruiting branches & increased boll shed (Hodges 1995)

Increased pest & disease, reduced lint yield & fiber quality (Main et al. 2010)

- Important nutrients for cotton difficult to manage
- N nutrition most important factor in cotton production

(Bondada and Oosterhuis 2001)

Potassium (K)

Vital role in growth & metabolism (Read et al. 2006) Activating number of important enzymes (Evans & Sorger 1966)

Important role during fiber development (Oosterhuis 2001) Cotton required K to activate response of N (Pye Tin 1995)

Major solute in the fiber for fiber elongation

(Dhinsa et al. 1975)

Normal leaf

- •K application with other nutrients more tolerant to pests & diseases (Perrennoud 1990)
- Sensitivity K supply, large requirement for K & immobility in soil, lead deficiency even on soils - high in extractable K (Oosterhuis, 1995)

K deficient leaf 1998)

To investigate the effects of different rates of N and K fertilizer on the growth and yield component of cotton

To examine the effects of different rates of N and K fertilizer on the fiber quality of cotton and

To evaluate the interaction of N and K nutrition on seed cotton yields

Materials & Methods

Experimental sites

- •Two-seasons field experiment
- •Cotton Seed Farm Pyawbwe, Mandalay Region
- •Pre- and post-monsoon seasons (2015-16)

Treatments

Factor (A) Nitrogen application

- N₀ without Nitrogen
- $N_1 60 \text{ kg N ha}^{-1}$
- N₂ 120 kg N ha⁻¹
- N₃ 180 kg N ha⁻¹

Factor (B) Potassium application

- K₀ without Potassium
- K₁ 62.25 kg K ha⁻¹

Fertilizer application

- Equally three split application of N and K fertilizer for all treatments
- All plots were provided a basal application of phosphorous 26.4 kg P ha⁻¹

Before sowing

Squaring stage

Data collections

(1) Plant sampling

- (a) Growth characters
 - Plant height (cm)
 - Number of main-stem nodes plant⁻¹
 - Number of sympodial branches plant⁻¹
 - Number of monopodial branches plant⁻¹

(b)Yield and yield components

- Number of squares plant⁻¹
- Number of flowers plant⁻¹
- Number of boll plant⁻¹
- Boll weight (g)
- Thousand seed weight(g)
- Boll weight plant⁻¹ (g)

For both seasons, ten sampled plants were randomly selected from the sampling areas to observe the above characters

(2) Fiber quality

- •Fiber length (mm)
- •Fiber strength (lb mg⁻¹)
- Fiber fineness (micronaire)
- Fiber maturity ratio
- Ginning percent (%)

In both seasons, ten open bolls - picked & analyzed for fiber quality Fiber quality test – carried out at Cotton fiber and Yarn Testing Laboratory, Meiktila Township

during experimental period (March 2015 – January 2016)

Table 1. Measurement of physicochemical properties of experimental soil

Parameters		Amount (rating)
Soil Texture	-	Silt Ioam
Texture% (sand, silt, clay)	-	(20.8%,52.3%,26.9%)
Soil pH	-	6.8 (neutral)
Available N (mg kg ⁻¹)	-	76 (medium)
Available P (mg kg ⁻¹)	-	19 (medium)
Available K (mg kg ⁻¹)	-	343 (high)
Bulk density (g cm ^{−3})	-	1.3
Cation Exchange capacity (cmol ₍₊₎ kg ⁻¹)	-	24 (medium)
Organic matter(%)	-	1.6 (low)
EC (dS m ^{−1})	-	0.14 (non saline)
Exchangeable Ca (cmol ₍₊₎ kg ⁻¹)	-	12 (high)
Exchangeable Mg (cmol ⁽⁺⁾ kg ⁻¹)	-	9 (high)
SAR	-	0.58 18

- Statistical analysis was done by using Statistix 8 software
- Treatment means were compared by Least Significant Difference (LSD) test at 5% level

Results & Discussion

For pre-monsoon season

March - August (2015)

Subsequent increase in N treatments resulted in proportionate increase in the plant height **Kumbhar et al. (2008)**

Figure 2. Plant height of cotton as affected by nitrogen and potassium applications in pre-monsoon season, 2015-2016

Table 2. Mean comparison of plant growth characters of seed-cotton as affected
by nitrogen and potassium application (pre-monsoon season, 2015)

	No. of	No.of	No. of		
Treatments	main-stem	sympodial	monopodial		
	nodes plant ⁻¹	branches plant ⁻¹	branches plant ⁻¹		
Nitrogen (N)					
0 kg ha ⁻¹	20.60c	12.48b	0.90c		
60 kg ha ⁻¹	22 46h	13 73a	1 13h		
Main stem nodes p	lant ^{−1} was significa	intly increased with h	igher N treatments		
Clawson et al. (200	06)				
Potassium (K)					
0 kg ha ⁻¹	21.87	13.05b	1.26a		
62.25 kg ha ⁻¹	22.30	13.28b	1.13b		
124.5 kg ha ⁻¹	23.08	14.23a	(1.11b)		
LSD _{0.05}	1.13	0.80	0.12		
Pr>F					
Ν	**	**	**		
К	ns	*	*		
N × K	ns	ns	ns		
 CV%	5.95	7.01	12.24 22		

(a) Nitrogen application

(b) Potassium application

Figure 3. Mean values of no. of squares plant ⁻¹ as affected by nitrogen and potassium application in pre-monsoon season, 2015-2016

(a) Nitrogen application

(b) Potassium application

Figure 4. Mean values of no. of flowers plant ⁻¹ as affected by nitrogen and potassium application in pre-monsoon season, 2015-2016

Table 3. Yield and yield components as affected by N and K application(pre-monsoon season, 2015)

Treatments	No. of bolls plant ⁻¹	Boll wt (g)	1000 seed wt (g)	Boll wt plant ⁻¹ (g)	Yield (kg ha ⁻¹)
Nitrogen (N)					
Yield in		· · ·			t al.
1988) K ferti	lization increa	sed seed	cotton yield P	ettigrew (2003	3)
120 kg ha -	12.570	3.663	91.33ab	41.250	1242.10b
180 kg ha ⁻¹	14.72a	3.74a	94.22a	49.43a	1468.30a
LSD _{0.05}	0.86	0.13	5.01	3.88	161.64
Potassium (K)					
0 kg ha $^{-1}$	10.32b	3.51b	89.50	32.31b	900.40b
62.25 kg ha ⁻¹	10.96b	3.52b	88.67	34.67b	990.00b
124.5 kg ha ⁻¹	13.54a	3.63a	91.00	44.54a	1413.40a
LSD _{0.05}	0.75	0.11	4.34	3.36	139.99
Pr>F					
Ν	**	**	*	**	**
K	**	*	ns	**	**
N × K	**	ns	ns	**	*
CV%	7.61	3.63	5.71	10.69	15.01

pre-monsoon season, 2015

Figure 6. Combination effect of seed cotton yield (kg ha⁻¹) as affected by N and K application in pre-monsoon season, 2015

Table 4. Effect of nitrogen and potassium application on fiber quality of cottonduring pre-monsoon season 2015

Treatments	Fiber length (mm)	Fiber strength (lb mg ⁻¹)	Fiber fineness (micronair)	Maturity ratio	Ginning %	
Nitrogen (N)						
(Pettigrew 1999) observed that fiber maturity can be reduced when K levels are insufficient.						
180 kg ha ⁻¹	28.89	7.96	4.44	0.86	33.71	
LSD _{0.05}	0.60	0.13	0.32	0.03	1.15	
Potassium (K) 0 kg ha ⁻¹	28.25	7.91	4.50	0.86b	33.97	
62.25 kg ha ⁻¹	28.58	7.96	4.52	0.87ab	33.94	
124.5 kg ha ⁻¹	28.75	8.01	4.45	0.89a	33.74	
LSD _{0.05}	0.52	0.11	0.27	0.03	0.99	
Pr>F						
Ν	ns	ns	ns	ns	ns	
К	ns	ns	ns	*	ns	
N × K	ns	ns	ns	ns	ns	
CV%	2.15	1.67	7.2	3.22	3.47 28	

Results & Discussion

For post-monsoon season

August (2015) - January (2016)

Application of highest N fertilizer treatment produced the tallest plants than other **Alitabar et al. (2013)**

(a) Nitrogen treatments

(b) Potassium treatments

Figure 7. Plant height of cotton as affected by nitrogen and potassium applications in post-monsoon season, 2015-2016

Table 5. Mean comparison of plant growth characters of seed-cotton as affected by nitrogenand potassium application (post-monsoon season, 2015-2016)

			~)
Treatments	No. of main-stem nodes plant ⁻¹	No. of No.of main-stem sympodial nodes branches plant ⁻¹ plant ⁻¹	
Nitrogen (N)			
Increased number of Increasing N treatm	of sympodial branch ent Emara & El-Ga	es plant ^{−1} was obta mmaal (2012)	ined from
180 kg ha ⁻¹	25.80a	15.73a	1.27a
LSD _{0.05}	1.34	1.15	0.16
Potassium (K)			
0 kg ha ⁻¹	23.64	13.76b	1.17
62.25 kg ha ⁻¹	24.13	14.4ab	1.08
124.5 kg ha ⁻¹	24.94	15.17a	1.06
LSD _{0.05}	1.16	0.99	0.14
Pr>F			
Ν	**	**	**
K	ns	*	ns
N × K	ns	ns	ns
CV%	5.66	8.18	14.55 31

Figure 8. Mean values of no. of squares plant⁻¹ as affected by nitrogen and potassium application in post-monsoon season, 2015-2016

Figure 9. Mean values of no. of flowers plant⁻¹ as affected by nitrogen and potassium application in post-monsoon season, 2015-2016

Table 6. Yield and yield components as affected by nitrogen and potassiumapplication (post-monsoon season, 2015-2016)

Treatments	No. of bolls plant ⁻¹	Boll wt (g)	1000 seed wt (g)	Boll wt plant ⁻¹ (g)	Yield (kg ha ⁻¹)
Nitrogen (N)					
0 kg ha ⁻¹	8.59d	3.26c	88.44c	24.30d	764.50d
60 kg ha ⁻¹	10.57c	3.54b	94.00bc	32.30c	986.40c
120 kg ha ⁻¹	13.70b	3.83a	100.00ab	45.16b	1345.50b
180 kg ha ⁻¹	17.63a	4.10a	102.22a	61.30a	1835.80a
	1.5	0.28	6.74	6.29	193.98
Potassium (K)					
0 kg ha ⁻¹	10.63c	3.61	93.17	33.47c	994.60c
62.25 kg ha ⁻¹	12.03b	3.62	96.33	39.11b	1179.70b
124.5 kg ha ⁻¹	15.21a	3.83	99.00	49.72a	1524.90a
LSD _{0.05}	1.3	0.24	5.83	5.44	167.99
Pr>F					
N	**	**	**	**	**
IN IN	**			**	**
K		ns	ns	*	
N × K	*	ns	ns		*
CV%	12.19	7 73	7 17	15.77	16.09 34

Figure 10. Combination effect of number of boll plant⁻¹ as affected by N and K application in post-monsoon season, 2015

nitrogen and potassium application in post-monsoon season, 2015

Table 7. Effect of nitrogen and potassium application on fiber quality of cottonduring post-monsoon season 2015-2016

Treatments	Fiber length (mm)	Fiber strength (Ib mg ⁻¹)	Fiber fineness (micronair)	Maturity ratio	Ginning %
Nitrogen (N)					
0 kg ha ⁻¹	30.44	7.97	4.72	1.07	38.79
60 kg ha ⁻¹	31.11	7.96	4.93	1.13	38.01

This finding was in line with **Dhindsa et al. (1975)** when K levels were insufficient or low, fiber elongation was reduced

Potassium (K)					
0 kg ha ⁻¹	30.25b	7.95b	5.01	1.07b	38.39
62.25 kg ha ⁻¹	30.58b	7.94b	4.74	1.09b	38.26
124.5 kg ha ⁻¹	31.25a	8.08a	4.66	1.16a	38.03
LSD _{0.05}	0.55	0.09	0.34	0.06	1.10
Pr>F					
N	ns	ns	ns	ns	ns
K	**	**	ns	*	ns
N × K	ns	ns	ns	ns	ns
CV%	2.12	1.40	8.45	6.44	3.41 3

Summary

- Plant growth, yield components and yield were highly significantly affected by N in both seasons
- No. of sympodial branches plant⁻¹, no. of bolls plant⁻¹, boll weight plant⁻¹ and seed cotton yield were significantly affected by K in both seasons
- No. of bolls plant⁻¹, boll weight plant⁻¹ and seed cotton yield were significantly affected by N × K interaction in both seasons

- For fiber quality, only maturity ratio was significantly affected by K in pre-monsoon season
- In post-monsoon season, fiber length, fiber strength and maturity ratio were significantly affected by K treatments

Conclusion

- N mostly influenced on growth and yield of cotton although no affect on fiber quality, whereas K was more pronounced for no. of sympodial branches, yield and fiber quality
- The results from all quality characteristics can be assumed that
 K is a key to increase the better fiber quality rather than N
- In both seasons, combine application of N and K indicated that the response of seed cotton yield to N was influenced by K, vice versa

- 180 kg N ha⁻¹ with 124.50 kg K ha⁻¹ might be the best fertilizer ratio for higher seed cotton yield and quality under the present study conditions
- Further investigations will be necessary to understand the response of N and K fertilization on cotton yield and quality under different soil fertility and climate conditions using different cultivars

Research Photo

Thank you

